Tentamen Signal Analysis, 5/2/04, room 13.202, 9.00-12.00

Please write your name and student number on each sheet; answer either in Dutch or English.

Question 1

a. Calculate the Fourier transforms of the functions $f(t) = \sin(2\pi f_0 t)$ and $g(t) = e^{-t/\tau}$ for $t \ge 0$ and g(t) = 0 for t < 0.

b. Calculate the convolution f * g by using the result of **a**.

c. Draw f * g for $\tau \ll 1/f_0$ and for $\tau > 1/f_0$, and explain this result using a graphical representation of the convolution operation.

Question 2

a. A sequence s(n) is defined by s(-2) = -3, s(-1) = 2, s(0) = -1, s(1) = 2, s(2) = 3, and s(i) = 0 for $i \notin \{-2, -1, 0, 1, 2\}$. Calculate the Fourier transform $\hat{S}(f)$ of s(n), and write it as a simple sum of a DC-term, a sine and a cosine.

b. The sequence of **a** is input to a digital filter characterized by

 $w(n) + \alpha w(n-1) + \beta w(n-2) = s(n) + \gamma s(n-1)$, where w(n) is the resulting output sequence. Find the Fourier transform $\hat{W}(f)$ of the output.

c. Sketch a physical realization of the filter defined in b in terms of amplifiers and delay lines.

Question 3

The joint probability density function (pdf) of two random variables x and y is given by $p(x, y) = 1/\pi$ for $x^2 + y^2 \le 1$, and p(x, y) = 0 elsewhere.

a. Show that the marginal pdf p(x) is given by $p(x) = \frac{2}{\pi}\sqrt{1-x^2}$ for $-1 \le x \le 1$, and

p(x) = 0 elsewhere. Make a sketch of p(x, y), p(x), and p(y).

b. Calculate the conditional pdf p(y | x).

c. Show whether *x* and *y* are independent.

d. Calculate the covariance of *x* and *y*.

Question 4

The random signal s(t) is the sum of two statistically independent, stationary random signals x(t) and y(t), where x(t) has an autocorrelation function $R_x(\tau) = \exp(-\alpha \tau^2)$, with α a positive constant; y(t) is zero mean white noise with the power spectral density $P_y(f) = A$. This signal

s(t) = x(t) + y(t) is passed through a linear filter with impulse response h(t)

$$h(t) = \frac{1}{\sigma} e^{-t/\sigma} \text{ for } t \ge 0$$

$$h(t) = 0 \text{ for } t < 0$$

a. Calculate the power spectral density of signal x(t). (You may want to use $\int_{-\infty}^{\infty} e^{-ct^2} dt = \sqrt{\frac{\pi}{c}}$)

b. Calculate the autocorrelation function and power spectral density of s(t).

c. Find the power spectral density of the output signal